A Guide to Maths Calculation Methods

in KS1 \& KS2
Maids Moreton CE School
2021

This guide has been written to help you understand how mathematical calculation is taught at Maids Moreton CE School. It shows the progression in mental and written calculations that we teach our children in each year group. We know that you are keen to help with your child's maths education but may be unsure how best to support them, as the methods we use today may have changed from the time when you were at school. We hope this guide will enable you to feel more confident in how to support your child's learning.

The guide also provides our staff with a clear and consistent framework for teaching mathematical calculation and shows a clear progression of skills for the four main disciplines of number: addition, subtraction, multiplication and division. Children are taught why the methods work, not just how to perform them.

The National Curriculum states that children should become fluent in the fundamentals of Mathematics, be able to reason mathematically and solve problems by applying Mathematics. To support this mastery approach our skills progression is supported by the White Rose maths scheme, which helps children to build on their mental and written calculations in small steps, and therefore, develop a deeper understanding of number. In order to suit each age group and level of differentiation required, we use the principle of the Concrete-Pictorial-Abstract approach to help children gain a true understanding of each mathematical concept:

- Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects (e.g. cubes, counters, counting bears, bead strings etc). This is a 'hands on' component and is the key foundation for conceptual understanding for all children.
- Pictorial representation - a pupil has sufficiently understood the practical experiences performed and can now relate them to representations, such as a diagram or picture of the problem. This may include using number lines, bar models, arrays, tens frames, and other drawn methods to support their working out.
- Abstract representation - a pupil has now built sufficient confidence and understanding to represent problems using mathematical notation, for example $12 \times 2=24$, and more complex written methods such as column addition or long division.

It is important that conceptual understanding, supported by the use of representation, is secure for all operations before moving forward with other concepts, and our staff continually reinforce this depth of learning by going back and forth between these methods where required.

For those children who show strong mathematical skills and understanding, the intention is to deepen their learning rather than move them into the next year's curriculum. We recommend that parents avoid the temptation to look at upcoming strategies and instead, support their child in developing their confidence further in the appropriate methods and concepts for their own year group. Your child's teacher will be able to explain the different ways you can do this, for example using open-ended challenges, more difficult problem solving tasks and explaining their reasoning in different ways.

Addition - EYFS			
Objectives	Concrete	Pictorial	Abstract
Knows that a group of things change in quantity when something is added. Find the total number of items in two groups by counting all of them. Says the number that is one more than a given number. Finds one more from a group of up to five objects, then ten objects. In practical activities and discussion, beginning to use the vocabulary involved in adding. Using quantities and objects, they add two single digit numbers and count on to find the answer. Solve problems including doubling.	Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as counters, cubes, Numicon etc. Use visual supports such as ten frames, part-part-whole and addition mats, with the physical objects and resources that can be manipulated.	Two groups of Pictures, so children can count the total. Bar model using visuals, pictures/icons or colours. Use visual supports such as ten frames, part part whole and addition mats with pictures/icons.	A focus on symbols and numbers to form a calculation. * No expectation for children to be able to record a number sentence/addition calculation.

Start at the bigger number and counting on	Start with the larger number on the bead string and then count of to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 (The 'Make 10' strategy)	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	$3+9=$ Use pictures or a number line. Regroup or Partition the smaller number using the part part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

Addition - Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Adding 3 1-digit numbers	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possiblel then add on the third dizit.	Add together three groups of objects. Draw a	$\begin{aligned} \underbrace{4+7+6}_{10} & =10+7 \\ & =17 \end{aligned} \begin{aligned} & \text { Combine the two numbers } \\ & \text { that make 10and then add } \\ & \text { on the remainder. } \end{aligned}$
Adding a 2-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$

Adding a 2-digit number and multiples of 10	$25+10=35$ Explore that the ones digit does not change	Base 10 may be used above the number line initially. The calculation will be shown alongside the number line to see the connection	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Adding two 2-digit numbers (No re-grouping)	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. (Some children may not be ready for place value counters in Y 2) Numicon may also be used	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. Use number line and bridge ten using part whole if necessary. Base 10 may be used above the number line. The calculation will be shown alongside the number line to see the connection	$\begin{gathered} 20+\left.5\right\|_{40+7} ^{25+4 \lambda} \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$ Partitioning: Recording addition in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: $\begin{array}{r} 40+7 \\ 30+\quad 5 \\ \hline 70+12 \end{array}$

Addition - Year 3			
Objective and Strategy	Concrete	Pictorial	Abstract
Add and subtract numbers with up to 3-digits, using formal written methods of columnar addition Column addition (no regrouping)	 Using manipulatives (dienes, numicon, counters), children are to line up hundreds, tens and ones. Children should be secure with using PV counters before moving onto pictorial. The calculation will be shown alongside the model used to see the connection	Children are to draw, in a PV frame, the manipulatives, that they are using. Secure knowledge of representation with the PV columns. The calculation will be shown alongside the model to see the connection	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Children to move onto recording more formally. Some children may need to use the expanded method (see below).
Column addition (with regrouping)		Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	$\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$ Children are to begin with the abstract: expanded form. For those children, that are confident after AFL, the below method should be used.

Addition - Year 5/6			
Objective and Strategy	Concrete	Pictorial	Abstract
Add numbers with more than 4 digits.	See Year 4	See Year 4	Children should have abstract supported by a pictorial or concrete if needed.
Add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	See Year 4	See Year 4	$\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \\ 111 \\ 23 \cdot 361 \\ 9.0080 \\ 59 \cdot 770 \\ +\quad 1 \cdot 300 \\ \hline 93.511 \\ 21 \end{array}$ Insert zeros for place holders.

Subtraction

Subtraction - EYFS

Objectives	Concrete	Pictorial	Abstract
-Knows that a group of things change in quantity when something is taken away -Find one less from a group of five objects, then ten objects. -In practical activities and discussion, beginning to use the vocabulary involved in subtracting.	Use toys and general classroom resources for children to physically manipulate, group/regroup. $\underbrace{\stackrel{\text { take away }}{2 \text { cubes }}}_{5 \text { cubes }}$		focus on symbols and numbers to form a calculation. $10-6=4$
-Using quantities and objects, they subtract two single digit numbers and count back to find the answer.	Use specific maths resources such as snap cubes, Numicon, bead strings etc. Use visual supports such as ten frames, part part whole and subtraction mats, with the physical objects and resources that can be manipulated.	A group of pictures for children to cross out or cover quantities to support subtraction. Use visual supports such as ten frames, part part whole and bar model with pictures/icons.	3 $?$ 7 $7-3=?$ * No expectation for children to be able to record a number sentence/addition calculation.

Subtraction - Year 1			
Objective and Strategy	Concrete	Pictorial	Abstract
Subtract one-digit and two-digit numbers to 20, including 0. Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4$ Use counters and move them away from the group as you take ther away counting backwards as you go.	Count back on a number line or track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? (Use your fingers to help you)

Find the difference
Rart-part whole
model

Subtraction - Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Subtract a two-digit number and ones, a two digit number and tens, two two-digit numbers Partitioning to subtract without re- Grouping: 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping. The calculation will be shown alongside the manipulative used	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$ Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: e.g. $43-21=22$ 40 and 3 $\frac{-20 \text { and } 1}{20 \text { and } 2}$ 20 and 2
Make ten strategy	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

Subtraction - Year 3

	Children to be encouraged to use counters to represent numbers and take counters away to subtract.			
Introduce decimal subtraction through context of money				

When confident, children can find their own way to record the exchange/regrouping

Subtraction- Year 5/6

Multiplication

Multiplication -EYFS

Objectives	Concrete	Pictorial	Abstract
- Solve problems including doubling	Counting and other maths resources for children to make 2 equal groups. Physical and real life examples that encourage children to see concept of doubling as adding two equal groups.	 Pictures and icons that encourage children to see concept of doubling as adding two equal groups.	$1+1=$ $7+7=$ $2+2=$ $8+8=$ $3+3=$ $9+9=$ $4+4=$ $10+10=$ $5+5=$ $11+11=$ $6+6=$ $12+12=$ Addition calculations to model adding two equal groups.

Multiplication - Year 1

Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doudeling	Double 4 is 8	
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	 Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$

Repeated addition

Multiplication - Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Counting in multiples of $2,3,4,5$, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$111 $1 \mathbf{1 1}$ 111 11 $?$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. $\begin{gathered} \text { yoves } \\ \text { yon } \\ \hline \text { yon } \end{gathered}$	Use representations of arrays to show different calculations and explore commutativity. 0000 0000	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Multiplication - Year 3			
Objective and Strategy	Concrete	Pictorial	Abstract
Multiplying two digit number by a one digit number		Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $18 \times 3=54$
Grid method progressing to the formal method.	\times T U 	$24 \times 3=72$ \times 20 4 3 00 0000 00 0000 00 0000	x 1 0 8 3 3 0 2 Children to add up each column to find the answer.
Solving problems including missing number problems, integer scaling	Move on to place value counters to show how we are finding groups of a number.	Bar model are used to explore missing numbers $4 \times \square=20$	
	Add up each column, starting with the ones making any exchanges needed. The calculation will be shown alongside the model chosen to see the connection		
	Model Calculation 		

Multiplication- Year 4			
Objective and Strategy	Concrete	Pictorial	Abstract
Multiply two digit and threedigit numbers by a one-digit number using formal written layout Grid method recap from year 3 for 2 digits $\times 1$ digit Multiplying numbers by 1 digit (year 4 expectation)	Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Fill each row with 126. Add up each column, starting with the ones making any exchanges needed. Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	$\text { HTO } \times \mathrm{O}$$135 \times 5=675$$x$ 1 0 0 3 0 5 5 0 0 1 5 0$\| 2$5 Children to add up each column to find the answer.

Multiplication - Year 6

Objective and Strategy	Concrete	Pictorial	Abstract
Multiply decimal up to 2 decimal place by a single digit.			Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.
			$\begin{array}{r} 3 \cdot 19 \\ \times 8 \cdot \\ \hline 25 \cdot 52 \end{array}$

Division - EYFS

Objectives	Concrete	Pictorial	Abstract
Solve problems including halving and sharing. - Halving a whole, halving a quantity of objects. - Sharing a quantity of objects.	Children have the opportunity to physically cut objects, food or shapes in half. Use visual supports such as halving mats and part part whole, with the physical objects and resources that can be manipulated. Counting and other maths resources for children to explore sharing between 3 or more. Counting and other maths resources for children to share into two equal groups.	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 . Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole. Pictures for children to create and visualise 3 or more equal groups.	

Division - Year 1			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as sharing (sharing objects into groups)		Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	Share 9 buns between three people. $9 \div 3=3$

Division - Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you an dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide $\mathbf{2 8}$ into $\mathbf{7}$ groups. How many are in each group?

Division - Year 3			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96+3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \mathrm{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

Divide 2digit numbers by a 1 digit number by partitioning into tens and ones using a place value grid	' Eva uses a place value grid and part-whole model to solve $66 \div 3$	See part- whole model	
Divide numbers that involve exchanging between the tens and ones. The answers do not have remainders.	Ron uses place value counters to divide 42 into three equal groups He shares the tens first and exchanges the remaining ten for ones. Then he shares the ones. $42 \div 3=14$	Annie uses a similar method to divide 42 by 3 Children may use pictorial representation for the pv counters, alongside the part-whole model Children use their times-tables to partition the number into multiples of the divisor.	$\begin{aligned} & 96 \div 8 \\ & 96 \div 4 \\ & 96 \div 3 \\ & 96 \div 6 \end{aligned}$ Compare the statements using $<,>$ or $=$ $\begin{aligned} & 48 \div 4 \bigcirc 36 \div 3 \\ & 52 \div 4 \bigcirc 42 \div 3 \\ & 60 \div 3 \bigcirc 60 \div 4 \end{aligned}$

Division - Year 4

Objective and Strategy	Concrete	Pictorial	Abstract
Divide up to 3 digit numbers by 1 digit. Short Division	$96 \div 3$ Tens Units 3 2 $\begin{array}{c}9 \\ 3\end{array}$ $\odot \odot \odot$ \odot $\odot \odot \odot$ \odot $\odot \odot$ Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder $\frac{19}{4 \longdiv { 7 ^ { 3 } 6 }} \quad \frac{247}{3 \longdiv { 7 ^ { 1 } 4 ^ { 2 1 } }}$ Children should be aware that a 0 is used to keep place value, if the number is not divisible. $\begin{array}{r} 093 \\ 8 \longdiv { 7 ^ { \prime } 4 ^ { \prime } 4 } \end{array}$ Move onto divisions with a remainder. $$

Division - Year 5			
Objective and Strategy	Concrete	Pictorial	Abstract
Divide at least 4 digit numbers by 1 digit. Interpret remainders appropriately for the context Short Division	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$ Finally move into decimal places to divide the total accurately.

Division - Year 6	
Objective and Strategy	Abstract
Long Division	Step 1 - a remainder in the ones $\begin{gathered} h t o \\ 041 \mathrm{R} 1 \\ \hline 4 \longdiv { 1 6 5 } \end{gathered}$ 4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160). 4 goes into 16 four times. 4 goes into 5 once, leaving a remainder of 1 . $\begin{aligned} & \text { th hto } \\ & 040400 \mathrm{R7} \\ & \hline 8207 \end{aligned}$ 8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$. 8 goes into 32 four times ($3,200 \div 8=400$) 8 goes into 0 zero times (tens). 8 goes into 7 zero times, and leaves a remainder of 7 . $\begin{array}{r} h t o \\ 061 \\ 4 \longdiv { 2 4 7 } \\ \frac{-4}{3} \end{array}$ When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 . Check: $4 \times 61+3=247$ $\begin{array}{r} \text { th hto } \\ 0402 \\ \frac{-8}{1} \end{array}$ When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 . Check: $4 \times 402+1=1,609$ Step 2 - a remainder in the tens

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
2	2	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
	$\frac{-4}{1}$	$\frac{-41}{18}$
Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens－－but there is a remainder！	To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten．	Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18.

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$=\frac{4}{18}$	－4 18	$\frac{-4}{18}$
	－18	－18
	0	0
Divide 2 into 18 ．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & { }^{n+0} \\ & 2 \longdiv { 2 7 8 } \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \begin{array}{c} h+0 \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{array} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \end{gathered}$ Divide 2 into 7 . Place 3 into the quotient.	$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{aligned} & h t o \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{0} 7 \\ & -\quad 6 \\ & \hline 18 \end{aligned}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} h 10 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -6 \\ \hline 18 \\ -18 \\ \hline 0 \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{gathered} n+0 \\ 2 \longdiv { 2 7 9 } \\ 27 \\ -\frac{2}{0} 7 \\ -\quad 6 \\ \hline 18 \\ \frac{-18}{0} \end{gathered}$ There are no more digits to drop down. The quotient is 139 .

